Source code for torch_ecg.databases.datasets.cpsc2019.cpsc2019_dataset

import json
import math
import warnings
from copy import deepcopy
from random import shuffle
from typing import Any, List, Optional, Sequence, Tuple

import numpy as np
from torch.utils.data.dataset import Dataset
from tqdm.auto import tqdm

from ...._preprocessors import PreprocManager
from ....cfg import CFG
from ....databases import CPSC2019 as CR
from ....utils.misc import ReprMixin

__all__ = [
    "CPSC2019Dataset",
]


[docs]class CPSC2019Dataset(ReprMixin, Dataset): """Data generator for feeding data into pytorch models using the :class:`~torch_ecg.databases.CPSC2019` database. Parameters ---------- config : dict Configurations for the dataset, ref. `CPSC2019TrainCfg`. A simple example is as follows: .. code-block:: python >>> config = deepcopy(CPSC2019TrainCfg) >>> config.db_dir = "some/path/to/db" >>> dataset = CPSC2019Dataset(config, training=True, lazy=False) training : bool, default True If True, the training set will be loaded, otherwise the test (val) set will be loaded. lazy : bool, default True If True, the data will not be loaded immediately, instead, it will be loaded on demand. **reader_kwargs : dict, optional Keyword arguments for the database reader class. """ __name__ = "CPSC2019Dataset" def __init__( self, config: CFG, training: bool = True, lazy: bool = False, **reader_kwargs: Any, ) -> None: super().__init__() self.config = deepcopy(config) if reader_kwargs.pop("db_dir", None) is not None: warnings.warn("`db_dir` is specified in both config and reader_kwargs", RuntimeWarning) self.reader = CR(db_dir=config.db_dir, **reader_kwargs) self.config.db_dir = self.reader.db_dir self.training = training self.n_classes = 1 self.lazy = lazy self.dtype = self.config.np_dtype self.siglen = self.config.input_len # alias, for simplicity self.records = [] self._train_test_split( train_ratio=self.config.train_ratio, force_recompute=False, ) self.ppm = PreprocManager.from_config(self.config) self.fdr = _FastDataReader(self.reader, self.records, self.config, self.ppm) self._signals = None self._labels = None if not self.lazy: self._load_all_data() def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]: if self.lazy: signal, label = self.fdr[index] else: signal, label = self._signals[index], self._labels[index] return signal, label def __len__(self) -> int: return len(self.fdr) def _load_all_data(self) -> None: """Load all data into memory.""" self._signals, self._labels = [], [] with tqdm( self.fdr, desc="loading data", unit="record", dynamic_ncols=True, mininterval=1.0, ) as pbar: for sig, lab in pbar: self._signals.append(sig) self._labels.append(lab) self._signals = np.array(self._signals) self._labels = np.array(self._labels) @property def signals(self) -> np.ndarray: """Cached signals, only available when `lazy=False` or preloading is performed manually. """ return self._signals @property def labels(self) -> np.ndarray: """Cached labels, only available when `lazy=False` or preloading is performed manually. """ return self._labels def _train_test_split(self, train_ratio: float = 0.8, force_recompute: bool = False) -> List[str]: """Perform train-test split. Parameters ---------- train_ratio : float, default 0.8 Ratio of the train set in the whole dataset. force_recompute : bool, default False If True, the train-test split will be recomputed, regardless of the existing ones stored in json files. Returns ------- records : List[str] List of the records split for training or for testing (validation). """ assert 0 < train_ratio < 100 _train_ratio = train_ratio if train_ratio < 1 else train_ratio / 100 split_fn = self.reader.db_dir / f"train_test_split_{_train_ratio:.2f}.json" if split_fn.is_file() and not force_recompute: split_res = json.loads(split_fn.read_text()) if self.training: self.records = split_res["train"] shuffle(self.records) else: self.records = split_res["test"] return records = deepcopy(self.reader.all_records) shuffle(records) split_num = int(_train_ratio * len(records)) train = sorted(records[:split_num]) test = sorted(records[split_num:]) split_res = {"train": train, "test": test} split_fn.write_text(json.dumps(split_res, ensure_ascii=False)) if self.training: self.records = train shuffle(self.records) else: self.records = test
[docs] def extra_repr_keys(self) -> List[str]: return [ "training", "reader", ]
class _FastDataReader(ReprMixin, Dataset): """Fast data reader. Parameters ---------- reader : CR The reader to read the data. records : Sequence[str] The list of records to read. config : CFG The configuration. ppm : PreprocManager, optional The preprocessor manager. """ def __init__( self, reader: CR, records: Sequence[str], config: CFG, ppm: Optional[PreprocManager] = None, ) -> None: self.reader = reader self.records = records self.config = config self.ppm = ppm self.siglen = self.config.input_len # alias, for simplicity def __len__(self) -> int: return len(self.records) def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]: rec_name = self.records[index] values = self.reader.load_data(rec_name, units="mV", data_format="flat") rpeaks = self.reader.load_ann(rec_name) if self.config.get("recover_length", False): reduction = 1 else: reduction = self.config.reduction labels = np.zeros((self.siglen // reduction)) # rpeak indices to mask for r in rpeaks: if r < self.config.skip_dist or r >= self.siglen - self.config.skip_dist: continue start_idx = math.floor((r - self.config.bias_thr) / reduction) end_idx = math.ceil((r + self.config.bias_thr) / reduction) labels[start_idx:end_idx] = 1 values = values.reshape((self.config.n_leads, self.siglen)) labels = labels[..., np.newaxis] values, _ = self.ppm(values, self.config.fs) return values, labels def extra_repr_keys(self) -> List[str]: return [ "reader", "ppm", ]