Source code for torch_ecg.databases.datasets.ludb.ludb_dataset

"""
"""

import json
import warnings
from copy import deepcopy
from random import randint, shuffle
from typing import Any, List, Optional, Sequence, Tuple

import numpy as np
from torch.utils.data.dataset import Dataset
from tqdm.auto import tqdm

from ...._preprocessors import PreprocManager
from ....cfg import CFG
from ....databases import LUDB as LR
from ....utils.misc import ReprMixin

__all__ = [
    "LUDBDataset",
]


[docs]class LUDBDataset(ReprMixin, Dataset): """Data generator for feeding data into pytorch models using the :class:`~torch_ecg.databases.LUDB` database. Parameters ---------- config : dict Configurations for the dataset, ref. `LUDBTrainCfg`. training : bool, default True If True, the training set will be loaded, otherwise the test (val) set will be loaded. lazy : bool, default True If True, the data will not be loaded immediately, instead, it will be loaded on demand. **reader_kwargs : dict, optional Keyword arguments for the database reader class. """ __name__ = "LUDBDataset" def __init__( self, config: CFG, training: bool = True, lazy: bool = False, **reader_kwargs: Any, ) -> None: super().__init__() self.config = deepcopy(config) if reader_kwargs.pop("db_dir", None) is not None: warnings.warn("`db_dir` is specified in both config and reader_kwargs", RuntimeWarning) self.reader = LR(db_dir=self.config.db_dir, **reader_kwargs) self.config.db_dir = self.reader.db_dir self.training = training self.dtype = self.config.np_dtype self.classes = self.config.classes self.n_classes = len(self.classes) self.siglen = self.config.input_len if self.config.leads is None: self.leads = self.reader.all_leads elif isinstance(self.config.leads, str): self.leads = [self.config.leads] else: self.leads = list(self.config.leads) self.lazy = lazy self.ppm = PreprocManager.from_config(self.config) self.records = self._train_test_split(self.config.train_ratio) self.fdr = _FastDataReader(self.reader, self.records, self.config) self.waveform_priority = ["N", "t", "p", "i"] self._signals = None self._labels = None if not self.lazy: self._load_all_data() def __len__(self) -> int: if self.config.use_single_lead: return len(self.leads) * len(self.records) return len(self.records) def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]: if self.config.use_single_lead: rec_idx, lead_idx = divmod(index, len(self.leads)) else: rec_idx, lead_idx = index, None rec = self.records[rec_idx] if not self.lazy: signals = self._signals[rec_idx] labels = self._labels[rec_idx] else: signals, labels = self.fdr[rec_idx] if lead_idx is not None: signals = signals[[lead_idx], ...] labels = labels[lead_idx, ...] else: # merge labels in all leads to one # TODO: map via self.waveform_priority labels = np.max(labels, axis=0) sampfrom = randint(self.config.start_from, signals.shape[1] - self.config.end_at - self.siglen) sampto = sampfrom + self.siglen signals = signals[..., sampfrom:sampto] labels = labels[sampfrom:sampto, ...] return signals, labels def _load_all_data(self) -> None: """Load all data into memory.""" self._signals, self._labels = [], [] with tqdm(self.fdr, total=len(self.fdr), dynamic_ncols=True, mininterval=1.0) as bar: for signals, labels in bar: self._signals.append(signals) self._labels.append(labels) self._signals = np.array(self._signals) self._labels = np.array(self._labels) @property def signals(self) -> np.ndarray: """Cached signals, only available when `lazy=False` or preloading is performed manually. """ return self._signals @property def labels(self) -> np.ndarray: """Cached labels, only available when `lazy=False` or preloading is performed manually. """ return self._labels def _train_test_split(self, train_ratio: float = 0.8, force_recompute: bool = False) -> List[str]: """Perform train-test split. Parameters ---------- train_ratio : float, default 0.8 ratio of the train set in the whole dataset. force_recompute : bool, default False If True, the train-test split will be recomputed, regardless of the existing ones stored in json files. Returns ------- List[str] The list of the records split for training or validation. """ _train_ratio = int(train_ratio * 100) _test_ratio = 100 - _train_ratio assert _train_ratio * _test_ratio > 0 train_file = self.reader.db_dir / f"train_ratio_{_train_ratio}.json" test_file = self.reader.db_dir / f"test_ratio_{_test_ratio}.json" if self.reader._subsample is not None: force_recompute = True if force_recompute or not all([train_file.is_file(), test_file.is_file()]): all_records = deepcopy(self.reader.all_records) shuffle(all_records) split_idx = int(_train_ratio * len(all_records) / 100) train_set = all_records[:split_idx] test_set = all_records[split_idx:] if self.reader._subsample is None: train_file.write_text(json.dumps(train_set, ensure_ascii=False)) test_file.write_text(json.dumps(test_set, ensure_ascii=False)) else: train_set = json.loads(train_file.read_text()) test_set = json.loads(test_file.read_text()) if self.training: records = train_set else: records = test_set if self.config.over_sampling > 1: records = records * self.config.over_sampling shuffle(records) return records
[docs] def extra_repr_keys(self) -> List[str]: return [ "training", "reader", ]
class _FastDataReader(ReprMixin, Dataset): """Fast data reader. Parameters ---------- reader : CR The reader to read the data. records : Sequence[str] The list of records to read. config : CFG The configuration. ppm : PreprocManager, optional The preprocessor manager. """ def __init__( self, reader: LR, records: Sequence[str], config: CFG, ppm: Optional[PreprocManager] = None, ) -> None: self.reader = reader self.records = records self.config = config self.ppm = ppm self.dtype = self.config.np_dtype if self.config.leads is None: self.leads = self.reader.all_leads elif isinstance(self.config.leads, str): self.leads = [self.config.leads] else: self.leads = list(self.config.leads) def __len__(self) -> int: return len(self.records) def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]: rec = self.records[index] signals = self.reader.load_data( rec, data_format="channel_first", units="mV", ).astype(self.dtype) if self.ppm: signals, _ = self.ppm(signals, self.config.fs) masks = self.reader.load_masks( rec, leads=self.leads, mask_format="channel_first", class_map=self.config.class_map, ).astype(self.dtype) if self.config.loss == "CrossEntropyLoss": return signals, masks # expand masks to have n vectors, with n = n_classes labels = np.ones((*masks.shape, len(self.config.mask_class_map)), dtype=self.dtype) for i in range(len(self.leads)): for key, val in self.config.mask_class_map.items(): labels[i, ..., val] = (masks[i, ...] == self.config.class_map[key]).astype(self.dtype) return signals, labels def extra_repr_keys(self) -> List[str]: return [ "reader", "ppm", ]