FedMNIST#
- class fl_sim.data_processing.FedMNIST(datadir: Path | str | None = None, transform: str | Callable | None = 'none', seed: int = 0, **extra_config: Any)[source]#
Bases:
FedVisionDataset
MNIST is a dataset to study image classification of handwritten digits 0-9.
To simulate a heterogeneous setting, FedML distribute the data among 1000 devices such that each device has samples of only 2 digits and the number of samples per device follows a power law. This dataset is adopted from [1], which is also used in [2].
NOTE: the maximum value of the raw data is 264.2510681152344, which could lead to numerical instability. We normalize the data to range [0, 1].
- Parameters:
datadir (Union[pathlib.Path, str], optional) – Directory to store data. If
None
, use default directory.transform (Union[str, Callable], default "none") – Transform to apply to data. Conventions:
"none"
means no transform, using TensorDataset.seed (int, default 0) – Random seed for data partitioning.
**extra_config (dict, optional) – Extra configurations.
References
- evaluate(probs: Tensor, truths: Tensor) Dict[str, float] [source]#
Evaluation using predictions and ground truth.
- Parameters:
probs (torch.Tensor) – Predicted probabilities.
truths (torch.Tensor) – Ground truth labels.
- Returns:
Evaluation results.
- Return type:
- get_dataloader(train_bs: int | None = None, test_bs: int | None = None, client_idx: int | None = None) Tuple[DataLoader, DataLoader] [source]#
Get local dataloader at client client_idx or get the global dataloader.
- Parameters:
train_bs (int, optional) – Batch size for training dataloader. If
None
, use default batch size.test_bs (int, optional) – Batch size for testing dataloader. If
None
, use default batch size.client_idx (int, optional) – Index of the client to get dataloader. If
None
, get the dataloader containing all data. Usually used for centralized training.
- Returns:
train_dl (
torch.utils.data.DataLoader
) – Training dataloader.test_dl (
torch.utils.data.DataLoader
) – Testing dataloader.