FedProxFEMNIST#
- class fl_sim.data_processing.FedProxFEMNIST(datadir: Path | str | None = None, transform: str | Callable | None = 'none', seed: int = 0, **extra_config: Any)[source]#
Bases:
FedVisionDataset
A subset of the federeated EMNIST proposed in FedProx.
This dataset is proposed in the FedProx paper [1] and used in the FedDR paper [2].
The FEMNIST data we used in the paper is a subsampled (and repartitioned) version of the original full dataset in order to impose additional statistical heterogeneity. The above dataset is generated by the following instruction: …
NOTE that this dataset is not the same as the original FEMNIST dataset, containing only 10 classes (a-j), instead of 62 classes (a-z, A-Z, 0-9). The raw data has been processed using min-max normalization to range [0, 1], hence any further augmentation is perhaps inappropriate.
- Parameters:
datadir (Union[pathlib.Path, str], optional) – Directory to store data. If
None
, use default directory.transform (Union[str, Callable], default "none") – Transform to apply to data. Conventions:
"none"
means no transform, using TensorDataset.seed (int, default 0) – Random seed for data partitioning.
**extra_config (dict, optional) – Extra configurations.
References
- evaluate(probs: Tensor, truths: Tensor) Dict[str, float] [source]#
Evaluation using predictions and ground truth.
- Parameters:
probs (torch.Tensor) – Predicted probabilities.
truths (torch.Tensor) – Ground truth labels.
- Returns:
Evaluation results.
- Return type:
- get_dataloader(train_bs: int | None = None, test_bs: int | None = None, client_idx: int | None = None) Tuple[DataLoader, DataLoader] [source]#
Get local dataloader at client client_idx or get the global dataloader.
- Parameters:
train_bs (int, optional) – Batch size for training dataloader. If
None
, use default batch size.test_bs (int, optional) – Batch size for testing dataloader. If
None
, use default batch size.client_idx (int, optional) – Index of the client to get dataloader. If
None
, get the dataloader containing all data. Usually used for centralized training.
- Returns:
train_dl (
torch.utils.data.DataLoader
) – Training dataloader.test_dl (
torch.utils.data.DataLoader
) – Testing dataloader.