Skip to main content
Ctrl+K

fl-sim 0.0.1 documentation

Getting started

  • Installation instructions
  • Usage examples

API Reference

  • fl_sim.nodes
    • Node
    • Server
    • ServerConfig
    • Client
    • ClientConfig
  • fl_sim.data_processing
    • FedDataset
    • FedVisionDataset
    • FedNLPDataset
    • FedCIFAR
    • FedCIFAR100
    • FedEMNIST
    • FedMNIST
    • FedRotatedCIFAR10
    • FedRotatedMNIST
    • FedProxFEMNIST
    • FedProxMNIST
    • FedShakespeare
    • FedProxSent140
    • FedSynthetic
    • FedLibSVMDataset
    • fl_sim.data_processing.register_fed_dataset
    • fl_sim.data_processing.list_fed_dataset
    • fl_sim.data_processing.get_fed_dataset
  • fl_sim.models
    • CNNMnist
    • CNNFEMnist
    • CNNFEMnist_Tiny
    • CNNCifar
    • CNNCifar_Small
    • CNNCifar_Tiny
    • ResNet18
    • ResNet10
    • RNN_OriginalFedAvg
    • RNN_StackOverFlow
    • RNN_Sent140
    • RNN_Sent140_LITE
    • MLP
    • FedPDMLP
    • LogisticRegression
    • SVC
    • SVR
    • fl_sim.models.reset_parameters
    • fl_sim.models.top_n_accuracy
    • CLFMixin
    • REGMixin
    • DiffMixin
  • fl_sim.optimizers
    • fl_sim.optimizers.get_optimizer
    • fl_sim.optimizers.register_optimizer
  • fl_sim.regularizers
    • fl_sim.regularizers.get_regularizer
    • Regularizer
    • L1Norm
    • L2Norm
    • L2NormSquared
    • LInfNorm
    • NullRegularizer
  • fl_sim.utils

Advanced Topics

  • Federated learning algorithms
    • Overview of Optimization Algorithms in Federated Learning
    • Proximal Algorithms in Federated Learning
    • Primal-Dual Algorithms in Federated Learning
    • Operator Splitting Algorithms in Federated Learning
    • Skipping Algorithms in Federated Learning
  • Command line interface
  • Visualization subsystem
  • Repository
  • Suggest edit
  • Open issue
  • .rst

REGMixin

Contents

  • REGMixin
    • REGMixin.predict()

REGMixin#

class fl_sim.models.REGMixin[source]#

Bases: object

Mixin for regressors.

predict(input: Tensor) → ndarray[source]#

Predict the regression target.

Parameters:

input (torch.Tensor) – The input data.

Returns:

output – The predicted regression target.

Return type:

numpy.ndarray

previous

CLFMixin

next

DiffMixin

Contents
  • REGMixin
    • REGMixin.predict()

By WEN Hao

© Copyright 2023, WEN Hao.