Source code for fl_sim.data_processing.fed_rotated_cifar10

import pickle
from pathlib import Path
from typing import Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.data as torchdata
import torchvision.transforms as transforms

from ..models import nn as mnn
from ..models.utils import top_n_accuracy
from ..utils.const import CACHED_DATA_DIR, CIFAR10_LABEL_MAP, CIFAR10_MEAN, CIFAR10_STD
from ._ops import CategoricalLabelToTensor, FixedDegreeRotation, ImageArrayToTensor, ImageTensorScale, distribute_images
from ._register import register_fed_dataset
from .fed_dataset import FedVisionDataset, VisionDataset

__all__ = [
    "FedRotatedCIFAR10",
]


[docs]@register_fed_dataset() class FedRotatedCIFAR10(FedVisionDataset): """CIFAR10 dataset with rotation augmentation. The rotations are fixed and are multiples of 360 / num_rotations [:footcite:ct:`Ghosh_2022_cfl`]. The original CIFAR10 dataset `<https://pytorch.org/vision/stable/_modules/torchvision/datasets/cifar.html#CIFAR10>`_ contains 50k training images and 10k test images. Images are 32x32 RGB images in 10 classes. Parameters ---------- datadir : str or pathlib.Path, optional Path to store the dataset. If not specified, the default path is used. num_rotations : int, default 2 Number of rotations to apply to the images in the dataset. num_clients : int, default 200 Number of clients to simulate. transform : str or callable, default "none" Transform (augmentation) to apply to the dataset. If "none", no augmentation is applied, only the normalization transform is applied. seed : int, default 0 Random seed for reproducibility. .. footbibliography:: """ __name__ = "FedRotatedCIFAR10" def __init__( self, datadir: Optional[Union[Path, str]] = None, num_rotations: int = 2, num_clients: int = 200, transform: Optional[Union[str, Callable]] = "none", seed: int = 0, ) -> None: self.num_rotations = num_rotations self.num_clients = num_clients assert self.num_clients % self.num_rotations == 0 super().__init__(datadir=datadir, transform=transform, seed=seed) def _preload(self, datadir: Optional[Union[str, Path]] = None) -> None: """Preload the dataset. Parameters ---------- datadir : Union[pathlib.Path, str], optional Directory to store data. If ``None``, use default directory. Returns ------- None """ default_datadir = CACHED_DATA_DIR / "fed-rotated-cifar10" self.datadir = Path(datadir or default_datadir).expanduser().resolve() self.datadir.mkdir(parents=True, exist_ok=True) # download data self.download_if_needed() self.DEFAULT_BATCH_SIZE = 20 self.DEFAULT_TRAIN_CLIENTS_NUM = self.num_clients self.DEFAULT_TEST_CLIENTS_NUM = self.num_clients self.DEFAULT_TRAIN_FILE = [f"cifar-10-batches-py/data_batch_{i}" for i in range(1, 6)] self.DEFAULT_TEST_FILE = ["cifar-10-batches-py/test_batch"] self._IMGAE = "image" self._LABEL = "label" # set criterion self.criterion = torch.nn.CrossEntropyLoss() # set transforms for creating dataset if self.transform is None: # set dynamic transform for train set self.transform = transforms.Compose( [ transforms.AutoAugment( policy=transforms.AutoAugmentPolicy.CIFAR10, ), ImageTensorScale(), transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD), ] ) self.target_transform = transforms.Compose([CategoricalLabelToTensor()]) # load data self._train_data_dict = { self._IMGAE: np.empty((0, 3, 32, 32), dtype=np.uint8), self._LABEL: np.empty((0,), dtype=np.int64), } self._test_data_dict = { self._IMGAE: np.empty((0, 3, 32, 32), dtype=np.uint8), self._LABEL: np.empty((0,), dtype=np.int64), } for file in self.DEFAULT_TRAIN_FILE: data = pickle.loads((self.datadir / file).read_bytes(), encoding="bytes") self._train_data_dict[self._IMGAE] = np.concatenate( [ self._train_data_dict[self._IMGAE], data[b"data"].reshape(-1, 3, 32, 32).astype(np.uint8), ] ) self._train_data_dict[self._LABEL] = np.concatenate( [ self._train_data_dict[self._LABEL], np.array(data[b"labels"]).astype(np.int64), ] ) data = pickle.loads( (self.datadir / self.DEFAULT_TEST_FILE[0]).read_bytes(), encoding="bytes", ) self._test_data_dict[self._IMGAE] = data[b"data"].reshape(-1, 3, 32, 32).astype(np.uint8) self._test_data_dict[self._LABEL] = np.array(data[b"labels"]).astype(np.int64) original_num_images = { "train": len(self._train_data_dict[self._LABEL]), "test": len(self._test_data_dict[self._LABEL]), } # set n_class self._n_class = len( np.unique( np.concatenate( [ self._train_data_dict[self._LABEL], self._test_data_dict[self._LABEL], ] ) ) ) # distribute data to clients self.indices = {} self.indices["train"] = distribute_images( original_num_images["train"], self.num_clients // self.num_rotations, random=True, ) self.indices["test"] = distribute_images( original_num_images["test"], self.num_clients // self.num_rotations, random=False, ) # perform rotation, and distribute data to clients print("Performing rotation...") angles = np.arange(0, 360, 360 / self.num_rotations)[1:] raw_images = { "train": torch.from_numpy(self._train_data_dict[self._IMGAE].copy()), "test": torch.from_numpy(self._test_data_dict[self._IMGAE].copy()), } raw_labels = { "train": self._train_data_dict[self._LABEL].copy(), "test": self._test_data_dict[self._LABEL].copy(), } for idx, angle in enumerate(angles): transform = FixedDegreeRotation(angle) self._train_data_dict[self._IMGAE] = np.concatenate( [ self._train_data_dict[self._IMGAE], transform(raw_images["train"]).numpy(), ] ) self._train_data_dict[self._LABEL] = np.concatenate( [ self._train_data_dict[self._LABEL], raw_labels["train"].copy(), ] ) self._test_data_dict[self._IMGAE] = np.concatenate( [ self._test_data_dict[self._IMGAE], transform(raw_images["test"]).numpy(), ] ) self._test_data_dict[self._LABEL] = np.concatenate( [ self._test_data_dict[self._LABEL], raw_labels["test"].copy(), ] ) self.indices["train"].extend( distribute_images( np.arange(original_num_images["train"]) + (idx + 1) * original_num_images["train"], self.num_clients // self.num_rotations, random=True, ) ) self.indices["test"].extend( distribute_images( np.arange(original_num_images["test"]) + (idx + 1) * original_num_images["test"], self.num_clients // self.num_rotations, random=False, ) ) del raw_images, raw_labels
[docs] def get_dataloader( self, train_bs: Optional[int] = None, test_bs: Optional[int] = None, client_idx: Optional[int] = None, ) -> Tuple[torchdata.DataLoader, torchdata.DataLoader]: """Get local dataloader at client `client_idx` or get the global dataloader. Parameters ---------- train_bs : int, optional Batch size for training dataloader. If ``None``, use default batch size. test_bs : int, optional Batch size for testing dataloader. If ``None``, use default batch size. client_idx : int, optional Index of the client to get dataloader. If ``None``, get the dataloader containing all data. Usually used for centralized training. Returns ------- train_dl : :class:`torch.utils.data.DataLoader` Training dataloader. test_dl : :class:`torch.utils.data.DataLoader` Testing dataloader. """ if client_idx is None: train_slice = slice(None) test_slice = slice(None) else: train_slice = self.indices["train"][client_idx] test_slice = self.indices["test"][client_idx] # static transform static_transform = transforms.Compose( [ ImageArrayToTensor(), transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD), ] ) if self.transform == "none": # apply only static transform train_ds = torchdata.TensorDataset( static_transform(self._train_data_dict[self._IMGAE][train_slice].copy()), self.target_transform(self._train_data_dict[self._LABEL][train_slice].copy()), ) else: # use non-trivial dynamic transform train_ds = VisionDataset( images=torch.from_numpy(self._train_data_dict[self._IMGAE][train_slice].copy()).to(torch.uint8), targets=self.target_transform(self._train_data_dict[self._LABEL][train_slice].copy()), transform=self.transform, ) train_dl = torchdata.DataLoader( dataset=train_ds, batch_size=train_bs or self.DEFAULT_BATCH_SIZE, shuffle=True, drop_last=False, ) test_ds = torchdata.TensorDataset( static_transform(self._test_data_dict[self._IMGAE][test_slice].copy()), self.target_transform(self._test_data_dict[self._LABEL][test_slice].copy()), ) test_dl = torchdata.DataLoader( dataset=test_ds, batch_size=test_bs or self.DEFAULT_BATCH_SIZE, shuffle=False, drop_last=False, ) return train_dl, test_dl
[docs] def extra_repr_keys(self) -> List[str]: return [ "n_class", ] + super().extra_repr_keys()
[docs] def evaluate(self, probs: torch.Tensor, truths: torch.Tensor) -> Dict[str, float]: """Evaluation using predictions and ground truth. Parameters ---------- probs : torch.Tensor Predicted probabilities. truths : torch.Tensor Ground truth labels. Returns ------- Dict[str, float] Evaluation results. """ return { "acc": top_n_accuracy(probs, truths, 1), "top3_acc": top_n_accuracy(probs, truths, 3), "top5_acc": top_n_accuracy(probs, truths, 5), "loss": self.criterion(probs, truths).item(), "num_samples": probs.shape[0], }
@property def url(self) -> str: """URL for downloading the dataset.""" return "https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz" @property def candidate_models(self) -> Dict[str, torch.nn.Module]: """A set of candidate models.""" return { "cnn_cifar": mnn.CNNCifar(num_classes=self.n_class), "cnn_cifar_small": mnn.CNNCifar_Small(num_classes=self.n_class), "cnn_cifar_tiny": mnn.CNNCifar_Tiny(num_classes=self.n_class), "resnet10": mnn.ResNet10(num_classes=self.n_class), } @property def doi(self) -> List[str]: """DOI(s) related to the dataset.""" return [ "10.1109/5.726791", # MNIST "10.1109/tit.2022.3192506", # IFCA ] @property def label_map(self) -> dict: """Label map for the dataset.""" return CIFAR10_LABEL_MAP
[docs] def view_image(self, client_idx: int, image_idx: int) -> None: """View a single image. Parameters ---------- client_idx : int Index of the client on which the image is located. image_idx : int Index of the image in the client. Returns ------- None """ import matplotlib.pyplot as plt if client_idx >= self.num_clients: raise ValueError(f"client_idx must be less than {self.num_clients}, got {client_idx}") total_num_images = len(self.indices["train"][client_idx]) + len(self.indices["test"][client_idx]) if image_idx >= total_num_images: raise ValueError(f"image_idx must be less than {total_num_images}, got {image_idx}") if image_idx < len(self.indices["train"][client_idx]): image = self._train_data_dict[self._IMGAE][self.indices["train"][client_idx][image_idx]] label = self._train_data_dict[self._LABEL][self.indices["train"][client_idx][image_idx]] image_idx = self.indices["train"][client_idx][image_idx] angle = image_idx // (len(self._train_data_dict[self._IMGAE]) // self.num_rotations) * (360 // self.num_rotations) else: image_idx -= len(self.indices["train"][client_idx]) image = self._test_data_dict[self._IMGAE][self.indices["test"][client_idx][image_idx]] label = self._test_data_dict[self._LABEL][self.indices["test"][client_idx][image_idx]] image_idx = self.indices["test"][client_idx][image_idx] angle = image_idx // (len(self._test_data_dict[self._IMGAE]) // self.num_rotations) * (360 // self.num_rotations) # image: channel first to channel last image = image.transpose(1, 2, 0) plt.imshow(image) plt.title(f"image_idx: {image_idx}, label: {label} ({self.label_map[int(label)]}), " f"angle: {angle}") plt.show()
[docs] def random_grid_view(self, nrow: int, ncol: int, save_path: Optional[Union[str, Path]] = None) -> None: """Select randomly `nrow` x `ncol` images from the dataset and plot them in a grid. Parameters ---------- nrow : int Number of rows in the grid. ncol : int Number of columns in the grid. save_path : Union[str, Path], optional Path to save the figure. If ``None``, do not save the figure. Returns ------- None """ import matplotlib.pyplot as plt rng = np.random.default_rng() fig, axes = plt.subplots(nrow, ncol, figsize=(ncol * 1, nrow * 1)) selected = [] for i in range(nrow): for j in range(ncol): while True: client_idx = rng.integers(self.num_clients) image_idx = rng.integers(len(self.indices["train"][client_idx])) if (client_idx, image_idx) not in selected: selected.append((client_idx, image_idx)) break image = self._train_data_dict[self._IMGAE][self.indices["train"][client_idx][image_idx]] axes[i, j].imshow(image.transpose(1, 2, 0)) axes[i, j].axis("off") if save_path is not None: fig.savefig(save_path, bbox_inches="tight", dpi=600) plt.tight_layout() plt.show()