Source code for fl_sim.data_processing.fedprox_mnist

import warnings
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.data as torchdata
from scipy.io import loadmat

from ..models import nn as mnn
from ..models.utils import top_n_accuracy
from ..utils._download_data import url_is_reachable
from ..utils.const import CACHED_DATA_DIR, MNIST_LABEL_MAP
from ._register import register_fed_dataset
from .fed_dataset import FedVisionDataset

__all__ = [
    "FedProxMNIST",
]


FEDPROX_MNIST_DATA_DIR = CACHED_DATA_DIR / "fedprox_mnist"
FEDPROX_MNIST_DATA_DIR.mkdir(parents=True, exist_ok=True)


[docs]@register_fed_dataset() class FedProxMNIST(FedVisionDataset): """Federeated MNIST proposed in FedProx. This dataset is proposed and used in [1]_ [2]_, where the data is partitioned in a non-IID manner. Parameters ---------- datadir : Union[pathlib.Path, str], optional Directory to store data. If ``None``, use default directory. transform : Union[str, Callable], default "none" Transform to apply to data. Conventions: ``"none"`` means no transform, using TensorDataset. seed : int, default 0 Random seed for data partitioning. **extra_config : dict, optional Extra configurations. References ---------- .. [1] https://github.com/litian96/FedProx/tree/master/data/mnist .. [2] https://github.com/litian96/FedProx/blob/master/data/mnist/generate_niid.py """ __name__ = "FedProxMNIST" def _preload(self, datadir: Optional[Union[str, Path]] = None) -> None: """Preload the dataset. Parameters ---------- datadir : Union[pathlib.Path, str], optional Directory to store data. If ``None``, use default directory. Returns ------- None """ self.datadir = Path(datadir or FEDPROX_MNIST_DATA_DIR).expanduser().resolve() if hasattr(self, "num_clients"): self.DEFAULT_TRAIN_CLIENTS_NUM = self.num_clients self.DEFAULT_TEST_CLIENTS_NUM = self.num_clients else: self.DEFAULT_TRAIN_CLIENTS_NUM = 1000 self.DEFAULT_TEST_CLIENTS_NUM = 1000 self.DEFAULT_BATCH_SIZE = 20 self.DEFAULT_TRAIN_FILE = "fedprox-mnist.mat" self.DEFAULT_TEST_FILE = "fedprox-mnist.mat" self._EXAMPLE = "" self._IMGAE = "data" self._LABEL = "label" if self.transform != "none": warnings.warn( "The images are not raw pixels, but processed. " "The transform argument will be ignored.", RuntimeWarning, ) self.transform = "none" self.criterion = torch.nn.CrossEntropyLoss() self.download_if_needed() self.__raw_data = loadmat(self.datadir / self.DEFAULT_TRAIN_FILE) self._client_data = generate_niid(self.__raw_data, num_clients=self.DEFAULT_TRAIN_CLIENTS_NUM, seed=self.seed) self._client_ids_train = list(range(self.DEFAULT_TRAIN_CLIENTS_NUM)) self._client_ids_test = list(range(self.DEFAULT_TEST_CLIENTS_NUM)) self._n_class = len( np.unique(np.concatenate([item["train_y"].tolist() + item["test_y"].tolist() for item in self._client_data])) )
[docs] def get_dataloader( self, train_bs: Optional[int] = None, test_bs: Optional[int] = None, client_idx: Optional[int] = None, ) -> Tuple[torchdata.DataLoader, torchdata.DataLoader]: """Get local dataloader at client `client_idx` or get the global dataloader. Parameters ---------- train_bs : int, optional Batch size for training dataloader. If ``None``, use default batch size. test_bs : int, optional Batch size for testing dataloader. If ``None``, use default batch size. client_idx : int, optional Index of the client to get dataloader. If ``None``, get the dataloader containing all data. Usually used for centralized training. Returns ------- train_dl : :class:`torch.utils.data.DataLoader` Training dataloader. test_dl : :class:`torch.utils.data.DataLoader` Testing dataloader. """ if client_idx is None: # get ids of all clients train_ids = self._client_ids_train test_ids = self._client_ids_test else: # get ids of single client train_ids = [self._client_ids_train[client_idx]] test_ids = [self._client_ids_test[client_idx]] # load data train_x = np.vstack([self._client_data[client_id]["train_x"] for client_id in train_ids]) train_y = np.concatenate([self._client_data[client_id]["train_y"] for client_id in train_ids]) test_x = np.vstack([self._client_data[client_id]["test_x"] for client_id in test_ids]) test_y = np.concatenate([self._client_data[client_id]["test_y"] for client_id in test_ids]) # dataloader train_ds = torchdata.TensorDataset( torch.from_numpy(train_x.astype(np.float32)).unsqueeze(1), torch.from_numpy(train_y.astype(np.int64)), ) train_dl = torchdata.DataLoader( dataset=train_ds, batch_size=train_bs or self.DEFAULT_BATCH_SIZE, shuffle=True, drop_last=False, ) test_ds = torchdata.TensorDataset( torch.from_numpy(test_x.astype(np.float32)).unsqueeze(1), torch.from_numpy(test_y.astype(np.int64)), ) test_dl = torchdata.DataLoader( dataset=test_ds, batch_size=test_bs or self.DEFAULT_BATCH_SIZE, shuffle=True, drop_last=False, ) return train_dl, test_dl
[docs] def extra_repr_keys(self) -> List[str]: return [ "n_class", ] + super().extra_repr_keys()
[docs] def evaluate(self, probs: torch.Tensor, truths: torch.Tensor) -> Dict[str, float]: """Evaluation using predictions and ground truth. Parameters ---------- probs : torch.Tensor Predicted probabilities. truths : torch.Tensor Ground truth labels. Returns ------- Dict[str, float] Evaluation results. """ return { "acc": top_n_accuracy(probs, truths, 1), "top3_acc": top_n_accuracy(probs, truths, 3), "top5_acc": top_n_accuracy(probs, truths, 5), "loss": self.criterion(probs, truths).item(), "num_samples": probs.shape[0], }
@property def url(self) -> str: """URL for downloading the dataset.""" # https://drive.google.com/file/d/1tCEcJgRJ8NdRo11UJZR6WSKMNdmox4GC/view?usp=sharing # "http://218.245.5.12/NLP/federated/fedprox-mnist.zip" if url_is_reachable("https://www.dropbox.com/"): return "https://www.dropbox.com/s/ndri55jt0w9juk1/fedprox-mnist.zip?dl=1" else: return "https://deep-psp.tech/Data/FL/fedprox-mnist.zip" @property def candidate_models(self) -> Dict[str, torch.nn.Module]: """A set of candidate models.""" return { "cnn_mnist": mnn.CNNMnist(num_classes=self.n_class), "cnn_femmist_tiny": mnn.CNNFEMnist_Tiny(num_classes=self.n_class), "cnn_femmist": mnn.CNNFEMnist(num_classes=self.n_class), # "resnet10": mnn.ResNet10(num_classes=self.n_class), "mlp": mnn.MLP(dim_in=28 * 28, dim_out=self.n_class, ndim=2), } @property def doi(self) -> List[str]: """DOIs related to the dataset.""" return [ "10.1109/5.726791", # MNIST "10.48550/ARXIV.1812.01097", # LEAF "10.48550/ARXIV.1812.06127", # FedProx ] @property def raw_data(self) -> Dict[str, np.ndarray]: """Raw data.""" return self.__raw_data @property def label_map(self) -> dict: """Label map for the dataset.""" return MNIST_LABEL_MAP
[docs] def view_image(self, client_idx: int, image_idx: int) -> None: """View a single image. Parameters ---------- client_idx : int Index of the client on which the image is located. image_idx : int Index of the image in the client. Returns ------- None """ import matplotlib.pyplot as plt if client_idx >= self.DEFAULT_TRAIN_CLIENTS_NUM: raise ValueError(f"client_idx should be less than {self.DEFAULT_TRAIN_CLIENTS_NUM}") tot_images = self._client_data[client_idx]["train_x"].shape[0] + self._client_data[client_idx]["test_x"].shape[0] if image_idx >= tot_images: raise ValueError(f"image_idx should be less than {tot_images}") if image_idx < self._client_data[client_idx]["train_x"].shape[0]: img = self._client_data[client_idx]["train_x"][image_idx] label = self._client_data[client_idx]["train_y"][image_idx] else: img = self._client_data[client_idx]["test_x"][image_idx - self._client_data[client_idx]["train_x"].shape[0]] label = self._client_data[client_idx]["test_y"][image_idx - self._client_data[client_idx]["train_x"].shape[0]] img = img + img.min() # to 0-255 img = (img * 255 / img.max()).astype(np.uint8) plt.imshow(img, cmap="gray") plt.title(f"client {client_idx}, label {label} ({self.label_map[int(label)]})") plt.show()
[docs] def random_grid_view(self, nrow: int, ncol: int, save_path: Optional[Union[str, Path]] = None) -> None: """Select randomly `nrow` x `ncol` images from the dataset and plot them in a grid. Parameters ---------- nrow : int Number of rows in the grid. ncol : int Number of columns in the grid. save_path : Union[str, Path], optional Path to save the figure. If ``None``, do not save the figure. Returns ------- None """ import matplotlib.pyplot as plt rng = np.random.default_rng() fig, axes = plt.subplots(nrow, ncol, figsize=(ncol * 1, nrow * 1)) selected = [] for i in range(nrow): for j in range(ncol): while True: client_idx = rng.integers(self.DEFAULT_TRAIN_CLIENTS_NUM) tot_images = ( self._client_data[client_idx]["train_x"].shape[0] + self._client_data[client_idx]["test_x"].shape[0] ) image_idx = rng.integers(tot_images) if (client_idx, image_idx) not in selected: selected.append((client_idx, image_idx)) break if image_idx < self._client_data[client_idx]["train_x"].shape[0]: img = self._client_data[client_idx]["train_x"][image_idx] label = self._client_data[client_idx]["train_y"][image_idx] else: img = self._client_data[client_idx]["test_x"][image_idx - self._client_data[client_idx]["train_x"].shape[0]] img = img + img.min() # to 0-255 img = (img * 255 / img.max()).astype(np.uint8) axes[i, j].imshow(img, cmap="gray") axes[i, j].axis("off") if save_path is not None: fig.savefig(save_path, bbox_inches="tight", dpi=600) plt.tight_layout() plt.show()
def generate_niid( mnist_data: Dict[str, np.ndarray], num_clients: int = 1000, lower_bound: int = 10, class_per_client: int = 2, seed: int = 42, train_ratio: float = 0.9, ) -> List[Dict[str, np.ndarray]]: """ modified from `FedProx <https://github.com/litian96/FedProx/blob/master/data/mnist/generate_niid.py>`_. Parameters ---------- mnist_data : Dict[str, np.ndarray] Raw MNIST data. num_clients : int, default 1000 Number of clients. lower_bound : int, default 10 Lower bound of number of samples per client. class_per_client : int, default 2 Number of classes per client. seed : int, default 42 Random seed for data partitioning. train_ratio : float, default 0.9 Ratio of training data. Returns ------- List[Dict[str, np.ndarray]] Partitioned data. """ NUM_CLASSES = 10 IMG_SHAPE = (28, 28) mnist_data["data"] = (mnist_data["data"] / 255.0).astype(np.float32) eps = 1e-5 options = dict(axis=0, keepdims=True) mean = mnist_data["data"].mean(**options) std = mnist_data["data"].std(**options) mnist_data["data"] = (mnist_data["data"] - mean) / (std + eps) mnist_data["data"] = mnist_data["data"].T.reshape((-1, *IMG_SHAPE)) mnist_data["label"] = mnist_data["label"].flatten() class_inds = {i: np.where(mnist_data["label"] == i)[0] for i in range(NUM_CLASSES)} class_nums = [lower_bound // class_per_client for _ in range(class_per_client - 1)] class_nums.append(lower_bound - sum(class_nums)) clients_data = [ { k: np.empty((0, *IMG_SHAPE), dtype=np.float32) if k.startswith("train") else np.array([], dtype=np.int64) for k in [ "train_x", "train_y", "test_x", "test_y", ] } for _ in range(num_clients) ] # idx = np.zeros(NUM_CLASSES, dtype=np.int64) idx = {i: 0 for i in range(NUM_CLASSES)} for c in range(num_clients): for j, n in enumerate(class_nums): label = (c + j) % NUM_CLASSES inds = class_inds[label][idx[label] : idx[label] + n] clients_data[c]["train_x"] = np.append(clients_data[c]["train_x"], mnist_data["data"][inds, ...], axis=0) clients_data[c]["train_y"] = np.append(clients_data[c]["train_y"], np.full_like(inds, label, dtype=np.int64)) idx[label] += n # print(f"idx = {idx}") # print(f"class_inds = {[(l, len(class_inds[l])) for l in range(NUM_CLASSES)]}") rng = np.random.default_rng(seed) probs = rng.lognormal(0, 2.0, (NUM_CLASSES, num_clients // NUM_CLASSES, class_per_client)) probs = ( np.array([[[len(class_inds[i]) - idx[i]]] for i in range(NUM_CLASSES)]) * probs / probs.sum(axis=(1, 2), keepdims=True) ) for c in range(num_clients): for j, n in enumerate(class_nums): label = (c + j) % NUM_CLASSES num_samples = round(probs[label, c // NUM_CLASSES, j]) if idx[label] + num_samples < len(class_inds[label]): inds = class_inds[label][idx[label] : idx[label] + num_samples] clients_data[c]["train_x"] = np.append(clients_data[c]["train_x"], mnist_data["data"][inds, ...], axis=0) clients_data[c]["train_y"] = np.append( clients_data[c]["train_y"], np.full_like(inds, label, dtype=np.int64), ) idx[label] += num_samples num_samples = clients_data[c]["train_x"].shape[0] inds = rng.choice(num_samples, num_samples, replace=False) train_len = int(train_ratio * num_samples) clients_data[c]["test_x"] = clients_data[c]["train_x"][inds[train_len:], ...] clients_data[c]["test_y"] = clients_data[c]["train_y"][inds[train_len:]] clients_data[c]["train_x"] = clients_data[c]["train_x"][inds[:train_len], ...] clients_data[c]["train_y"] = clients_data[c]["train_y"][inds[:train_len]] # print(f"idx = {idx}") return clients_data