FedProxSent140#
- class fl_sim.data_processing.FedProxSent140(datadir: Path | str | None = None, seed: int = 0, **extra_config: Any)[source]#
Bases:
FedNLPDataset
Federated Sentiment140 dataset used in FedProx paper.
Sentiment140 dataset [1] is built from the tweets with positive and negative sentiment. FedProx [2] preprocessed the data and saved the data into json files.
- Parameters:
References
- evaluate(probs: Tensor, truths: Tensor) Dict[str, float] [source]#
Evaluation using predictions and ground truth.
- Parameters:
probs (torch.Tensor) – Predicted probabilities.
truths (torch.Tensor) – Ground truth labels.
- Returns:
Evaluation results.
- Return type:
- get_dataloader(train_bs: int | None = None, test_bs: int | None = None, client_idx: int | None = None) Tuple[DataLoader, DataLoader] [source]#
Get local dataloader at client client_idx or get the global dataloader.
- Parameters:
train_bs (int, optional) – Batch size for training dataloader. If
None
, use default batch size.test_bs (int, optional) – Batch size for testing dataloader. If
None
, use default batch size.client_idx (int, optional) – Index of the client to get dataloader. If
None
, get the dataloader containing all data. Usually used for centralized training.
- Returns:
train_dl (
torch.utils.data.DataLoader
) – Training dataloader.test_dl (
torch.utils.data.DataLoader
) – Testing dataloader.