BaselineRemove¶
- class torch_ecg._preprocessors.BaselineRemove(window1: float = 0.2, window2: float = 0.6, **kwargs: Any)[source]¶
Bases:
PreProcessor
Baseline removal using median filter.
- Parameters:
Examples
from torch_ecg.cfg import DEFAULTS sig = DEFAULTS.RNG.randn(1000) pp = BaselineRemove(window1=0.2, window2=0.6) sig, _ = pp(sig, 500)
- apply(sig: ndarray, fs: Real) Tuple[ndarray, int] [source]¶
Apply the preprocessor to sig.
- Parameters:
sig (numpy.ndarray) –
- The ECG signal, can be
1d array, which is a single-lead ECG;
2d array, which is a multi-lead ECG of “lead_first” format;
3d array, which is a tensor of several ECGs, of shape
(batch, lead, siglen)
.
fs (numbers.Real) – Sampling frequency of the ECG signal.
- Returns:
filtered_sig (
numpy.ndarray
) – The median filtered (hence baseline removed) ECG signal.fs (
int
) – Sampling frequency of the filtered ECG signal.