torch_ecg.utils.metrics_from_confusion_matrix¶
- torch_ecg.utils.metrics_from_confusion_matrix(labels: ndarray | Tensor, outputs: ndarray | Tensor, num_classes: int | None = None, weights: ndarray | Tensor | None = None, thr: float = 0.5, fillna: bool | float = 0.0) Dict[str, float | ndarray] [source]¶
Compute macro metrics, and metrics for each class.
- Parameters:
labels (numpy.ndarray or torch.Tensor) – Binary labels, of shape
(n_samples, n_classes)
, or indices of each label class, of shape(n_samples,)
.outputs (numpy.ndarray or torch.Tensor) – Probability outputs, of shape
(n_samples, n_classes)
, or binary outputs, of shape(n_samples, n_classes)
, or indices of each class predicted, of shape(n_samples,)
.num_classes (int, optional) – Number of classes. If labels and outputs are both of shape
(n_samples,)
, then num_classes must be specified.weights (numpy.ndarray or torch.Tensor, optional) – Weights for each class, of shape
(n_classes,)
, used to compute macro metrics.thr (float, default: 0.5) – Threshold for binary classification, valid only if outputs is of shape
(n_samples, n_classes)
.fillna (bool or float, default: 0.0) – If is False, then NaN will be left in the result. If is True, then NaN will be filled with 0.0. If is a float, then NaN will be filled with the specified value.
- Returns:
metrics – Metrics computed from the one-vs-rest confusion matrix.
- Return type:
Examples
>>> from torch_ecg.cfg import DEFAULTS >>> # binary labels (100 samples, 10 classes, multi-label) >>> labels = DEFAULTS.RNG_randint(0, 1, (100, 10)) >>> # probability outputs (100 samples, 10 classes, multi-label) >>> outputs = DEFAULTS.RNG.random((100, 10)) >>> metrics = metrics_from_confusion_matrix(labels, outputs) >>> # binarize outputs (100 samples, 10 classes, multi-label) >>> outputs = DEFAULTS.RNG_randint(0, 1, (100, 10)) >>> # would raise >>> # RuntimeWarning: `outputs` is probably binary, AUC may be incorrect >>> metrics = metrics_from_confusion_matrix(labels, outputs) >>> # categorical outputs (100 samples, 10 classes) >>> outputs = DEFAULTS.RNG_randint(0, 9, (100,)) >>> # would raise >>> # RuntimeWarning: `outputs` is probably binary, AUC may be incorrect >>> metrics = metrics_from_confusion_matrix(labels, outputs)