LabelSmooth¶
- class torch_ecg.augmenters.LabelSmooth(fs: int | None = None, smoothing: float = 0.1, prob: float = 0.5, inplace: bool = True, **kwargs: Any)[source]¶
Bases:
Augmenter
Label smoothing augmentation.
- Parameters:
fs (int, optional) – Sampling frequency of the ECGs to be augmented.
smoothing (float, default 0.1) – The smoothing factor.
prob (float, default 0.5) – Probability of applying label smoothing.
inplace (bool, default True) – If True, the input tensor will be modified inplace.
**kwargs (dict, optional) – Additional keyword arguments.
Examples
ls = LabelSmooth() label = torch.randint(0, 2, (32, 26), dtype=torch.float32) _, label = ls(None, label)
- forward(sig: Tensor | None, label: Tensor, *extra_tensors: Sequence[Tensor], **kwargs: Any) Tuple[Tensor, ...] [source]¶
Forward method to perform label smoothing.
- Parameters:
sig (torch.Tensor) – Batched ECGs to be augmented, of shape
(batch, lead, siglen)
. Not used, but kept for compatibility with other augmenters.label (torch.Tensor) – The input label tensor, of shape
(batch_size, n_classes)
or(batch_size, seq_len, n_classes)
.extra_tensors (Sequence[torch.Tensor], optional) – Not used, but kept for consistency with other augmenters.
**kwargs (dict, optional) – Not used, but kept for consistency with other augmenters.
- Returns:
sig (torch.Tensor) – The input ECG tensor, unchanged.
label (torch.Tensor) – The output label tensor of shape
(batch_size, n_classes)
or(batch_size, seq_len, n_classes)
.extra_tensors (Sequence[torch.Tensor], optional) – Unchanged extra tensors.