ClassificationOutput¶
- class torch_ecg.components.ClassificationOutput(*args: Any, **kwargs: Any)[source]¶
Bases:
BaseOutput
Class that maintains the output of a (typically single-label) classification task.
- Parameters:
classes (Sequence[str]) – Class names.
prob (numpy.ndarray) – Probabilities of each class, of shape
(batch_size, num_classes)
.pred (numpy.ndarray) – Predicted class indices of shape
(batch_size,)
, or binary predictions of shape(batch_size, num_classes)
.
Note
Known issues:
fields of type dict are not well supported due to the limitations of the base class CFG, for example
>>> output = ClassificationOutput(classes=["AF", "N", "SPB"], pred=np.ones((1,3)), prob=np.ones((1,3)), d={"d":1}) >>> output {'classes': ['AF', 'N', 'SPB'], 'prob': array([[1., 1., 1.]]), 'pred': array([[1., 1., 1.]]), 'd': {'d': 1}} >>> output.d # has to access via `output["d"]` AttributeError: 'ClassificationOutput' object has no attribute 'd'
- compute_metrics() ClassificationMetrics [source]¶
Compute metrics from the output.
- Returns:
metrics – Metrics computed from the output.
- Return type: