MinMaxNormalize¶
- class torch_ecg._preprocessors.MinMaxNormalize(per_channel: bool = False)[source]¶
Bases:
Normalize
Min-Max normalization.
Min-Max normalization defined as
\[\frac{sig - \min(sig)}{\max(sig) - \min(sig)}\]- Parameters:
per_channel (bool, default False) – If True, normalization will be done per channel.
Examples
from torch_ecg.cfg import DEFAULTS sig = DEFAULTS.RNG.randn(1000) pp = MinMaxNormalize() sig, _ = pp(sig, 500)